

Lewatit® MK 51 is a weakly basic, macroporous anion exchange resin with polyhydroxy groups designed for the selective removal of boric acid and borates from lithium concentrates. The unique selectivity of the resin for borate allows a separation of boric acic from water and aqueous electrolyte solutions even containing a high salt content.

Lewatit® MK 51 can especially be used for:

- · the removal of boron from lithium concentrates, waste water and process water
- the removal of boron from RO permeate in purpose to produce water for irrigation
- the removal of boron traces in the production of ultrapure water and chemicals
- · the removal of boron from high concentrated magnesium chloride solutions
- the adsorption of oxoanions of W, Mo, V, Ge, As, Sb from process streams

The operating capacity depends on the specific flow rate, the total salt concentration of the treated medium and the feed concentration of boric acid.

The special properties of this product can only be fully utilized if the technology and process used correspond to the current state-of-the-art. Further advice in this matter can be obtained from Lanxess, Business Unit Liquid Purification Technologies.

This document contains important information and must be read in its entirety.

Common Description

Delivery form	Free base
Functional group	Polyalcohol
Matrix	Styrenic
Structure	Macroporous
Appearance	Opaque

Specified Data

Range of size for >90 vol% of all beads	mm	0.315 - 1.6
Total capacity (delivery	min. eq/L	0.8
form)	·	

This document contains important information and must be read in its entirety.

Typical Physical and Chemical Properties

Bulk density	(+/- 5%)	g/L	720
Density		approx. g/mL	1.1
Water retention (delivery form)		approx. weight %	45 - 51
Volume change (during exhaustion)		max. approx. %	15
Storage time (after delivery)		max. years	2
Storage temperature range		°C	-20 - +40

Operation

Operating temperature		max. °C	80
Operating pH range	during exhaustion		4-10
Bed depth for single column		min. mm	1000
Back wash bed expansion per m/h (20°C)		%	10
Specific pressure loss kPa*h/m² (15°C)		kPa*h/m² (15°C)	1.4
Max. pressure loss during operation		kPa	150
Specific flow rate		max. BV/h	20
Freeboard	during backwash	min. vol. %	100

Regeneration

HCI regeneration	concentration	approx. wt. %	5 - 10
HCI regeneration	quantity co-current	min. g/L resin	50 - 200
H ₂ SO ₄ regeneration	concentration	approx. wt. %	10
Regeneration contact		min. minutes	20
time			
Slow rinse at		min. BV	5 - 10
regeneration flow rate			
Fast rinse at service flow		min. BV	5 - 10
rate			

This document contains important information and must be read in its entirety.

Conditioning

NaOH conditioning	concentration	approx. wt. %	2 - 4
NaOH conditioning, di-	quantity	min. g/l resin	60 - 120
Na⁺			
Conditioning contact time		min. minutes	20
Slow rinse	at conditioning flow rate	min. BV	5
Fast rinse	at service flow rate	min. BV	5

This document contains important information and must be read in its entirety.

Additional Information & Regulations

Safety precautions

Strong oxidants, e.g. nitric acid, can cause violent reactions if they come into contact with ion exchange resins.

Toxicity

The safety data sheet must be observed. It contains additional data on product description, transport, storage, handling, safety and ecology.

Disposal

In the European Community Ion exchange resins have to be disposed, according to the European waste nomenclature which can be accessed on the internet-site of the European Union.

Storage conditions

It is recommended to store ion exchange resins at temperatures above the freezing point of water under roof in dry conditions without exposure to direct sunlight. If resin should become frozen, it should not be mechanically handled and left to thaw out gradually at ambient temperature. It must be completely thawed before handling or use. No attempt should be made to accelerate the thawing process.

Storage time

The recommended storage time for this product is explained in the technical document "Technical guidelines on the storage of Lewatit® ion exchange resins" available for download on our website. Please use the following link for more information: https://lanxess.com/en/products-and-brands/brands/lewatit/literature

Packaging

The experience has shown that the packaging stability for reliable resin containment is limited to 24 months under the storage conditions described above. It is therefore recommended to use the product within this time frame; otherwise the packaging condition should be checked regularly.

This information and our technical advice – whether verbal, in writing or by way of trials – are given in good faith but without warranty, and this also applies where proprietary rights of third parties are involved. Our advice does not release you from the obligation to check its validity and to test our products as to their suitability for the intended processes and uses. The application, use and processing of our products and the products manufactured by you on the basis of our technical advice are beyond our control and, therefore, entirely your own responsibility. Our products are sold in accordance with the current version of our General Conditions of Sale and Delivery.

LANXESS Deutschland GmbH

Liquid Purification Technologies Kennedyplatz 1 50569 Koeln Germany

+49-221-8885-0 lewatit@lanxess.com

www.lanxess.com www.lpt.lanxess.com

This document contains important information and must be read in its entirety.

